MC34063A, MC33063A, NCV33063A

1.5 A, Step-Up/Down/ Inverting Switching Regulators

The MC34063A Series is a monolithic control circuit containing the primary functions required for $\mathrm{DC}-$ to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components. Refer to Application Notes AN920A/D and AN954/D for additional design information.

Features

- Operation from 3.0 V to 40 V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5 A
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2\% Reference
- Pb-Free Packages are Available

This device contains 51 active transistors.
Figure 1. Representative Schematic Diagram

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

> MC34063A, MC33063A, NCV33063A

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	40	Vdc
Comparator Input Voltage Range	$\mathrm{V}_{\text {IR }}$	-0.3 to +40	Vdc
Switch Collector Voltage	$\mathrm{V}_{\mathrm{C} \text { (switch) }}$	40	Vdc
Switch Emitter Voltage (VPin $1=40 \mathrm{~V}$)	$\mathrm{V}_{\mathrm{E} \text { (switch) }}$	40	Vdc
Switch Collector to Emitter Voltage	$\mathrm{V}_{\mathrm{CE} \text { (switch) }}$	40	Vdc
Driver Collector Voltage	$\mathrm{V}_{\mathrm{C} \text { (driver) }}$	40	Vdc
Driver Collector Current (Note 1)	$\mathrm{I}_{\mathrm{C} \text { (driver) }}$	100	mA
Switch Current	Isw	1.5	A
Power Dissipation and Thermal Characteristics			
Plastic Package, P, P1 Suffix			
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	1.25	W
Thermal Resistance	$\mathrm{R}_{\text {өJA }}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package, D Suffix			
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	625	mW
Thermal Resistance	$\mathrm{R}_{\text {өJA }}$	160	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	T_{A}		${ }^{\circ} \mathrm{C}$
MC34063A		0 to +70	
MC33063AV, NCV33063A		-40 to +125	
MC33063A		-40 to +85	
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Maximum package power dissipation limits must be observed.
2. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MIL-STD-883, Method 3015. Machine Model Method 400 V .
3. NCV prefix is for automotive and other applications requiring site and change control.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ [Note 4], unless otherwise specified.)

Characteristics	Symbol	Min	Typ	Max	Unit
OSCILLATOR					
Frequency ($\mathrm{V}_{\text {Pin } 5}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$\mathrm{f}_{\text {osc }}$	24	33	42	kHz
Charge Current ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$\mathrm{I}_{\text {chg }}$	24	35	42	$\mu \mathrm{A}$
Discharge Current ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$\mathrm{l}_{\text {dischg }}$	140	220	260	$\mu \mathrm{A}$
Discharge to Charge Current Ratio (Pin 7 to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$\mathrm{I}_{\text {dischg }} / I_{\text {chg }}$	5.2	6.5	7.5	-
Current Limit Sense Voltage ($\mathrm{I}_{\text {chg }}=\mathrm{I}_{\text {dischg }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$\mathrm{V}_{\text {ipk(sense) }}$	250	300	350	mV

OUTPUT SWITCH (Note 5)

Saturation Voltage, Darlington Connection ($\mathrm{I}_{\mathrm{SW}}=1.0 \mathrm{~A}$, Pins 1,8 connected)	$\mathrm{V}_{\text {CE(sat) }}$	-	1.0	1.3	V
Saturation Voltage (Note 6) ($\mathrm{I}_{\text {SW }}=1.0 \mathrm{~A}, \mathrm{R}_{\text {Pin } 8}=82 \Omega$ to $\mathrm{V}_{\text {CC }}$, Forced $\beta \simeq 20$)	$\mathrm{V}_{\text {CE(sat) }}$	-	0.45	0.7	V
DC Current Gain ($\mathrm{I}_{\text {SW }}=1.0 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$\mathrm{h}_{\text {FE }}$	50	75	-	-
Collector Off-State Current ($\mathrm{V}_{\text {CE }}=40 \mathrm{~V}$)	$\mathrm{I}_{\text {(off) }}$	-	0.01	100	$\mu \mathrm{A}$

COMPARATOR

Threshold Voltage	$\mathrm{V}_{\text {th }}$				V
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					
$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$		1.225	1.25	1.275	
Threshold Voltage Line Regulation $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to 40 V$)$	1.21	-	1.29		
MC33063A, MC34063A	Regline				mV
MC33063AV, NCV33063A		-	1.4	5.0	
Input Bias Current $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$		-	1.4	6.0	

TOTAL DEVICE

Supply Current ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}$, Pin $7=\mathrm{V}_{\mathrm{CC}}$, $V_{\text {Pin } 5}>V_{\text {th }}$, Pin $2=G N D$, remaining pins open)	ICC	-	-	4.0	mA

4. $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for MC34063A, $-40^{\circ} \mathrm{C}$ for MC33063A, AV, NCV33063A
$\mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC34063A, $+85^{\circ} \mathrm{C}$ for MC33063A, $+125^{\circ} \mathrm{C}$ for MC33063AV, NCV33063A
5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
6. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents ($\leq 300 \mathrm{~mA}$) and high driver currents ($\geq 30 \mathrm{~mA}$), it may take up to $2.0 \mu \mathrm{~s}$ for it to come out of saturation. This condition will shorten the off time at frequencies $\geq 30 \mathrm{kHz}$, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:
Forced β of output switch : $\frac{I C \text { output }}{I_{C} \text { driver }-7.0 \mathrm{~mA}^{*}} \geq 10$

* The 100Ω resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

MC34063A, MC33063A, NCV33063A

Figure 2. Output Switch On-Off Time versus Oscillator Timing Capacitor

Figure 4. Emitter Follower Configuration Output Saturation Voltage versus Emitter Current

Figure 6. Current Limit Sense Voltage versus Temperature

Figure 3. Timing Capacitor Waveform

Figure 5. Common Emitter Configuration Output Switch Saturation Voltage versus Collector Current

Figure 7. Standby Supply Current versus Supply Voltage
7. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	$30 \mathrm{mV}= \pm 0.05 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=75 \mathrm{~mA}$ to 175 mA	$10 \mathrm{mV}= \pm 0.017 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	400 mVpp
Efficiency	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	87.7%
Output Ripple With Optional Filter	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	40 mVpp

Figure 8. Step-Up Converter

MC34063A, MC33063A, NCV33063A

Figure 9. External Current Boost Connections for I_{C} Peak Greater than 1.5 A

9a. External NPN Switch

9b. External NPN Saturated Switch
(See Note 8)
8. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents ($\leq 300 \mathrm{~mA}$) and high driver currents ($\geq 30 \mathrm{~mA}$), it may take up to $2.0 \mu \mathrm{~s}$ to come out of saturation. This condition will shorten the off time at frequencies $\geq 30 \mathrm{kHz}$, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended.

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\text {in }}=15 \mathrm{~V}$ to $25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	$12 \mathrm{mV}= \pm 0.12 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$ to 500 mA	$3.0 \mathrm{mV}= \pm 0.03 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	120 mVpp
Short Circuit Current	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	1.1 A
Efficiency	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	83.7%
Output Ripple With Optional Filter	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	40 mVpp

Figure 10. Step-Down Converter

Figure 11. External Current Boost Connections for I_{C} Peak Greater than 1.5 A
11a. External NPN Switch
11b. External PNP Saturated Switch

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	$3.0 \mathrm{mV}= \pm 0.012 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$ to 100 mA	$0.022 \mathrm{~V}= \pm 0.09 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	500 mVpp
Short Circuit Current	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	910 mA
Efficiency	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	62.2%
Output Ripple With Optional Filter	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	70 mVpp

Figure 12. Voltage Inverting Converter

Figure 13. External Current Boost Connections for I_{C} Peak Greater than 1.5 A

13a. External NPN Switch

13b. External PNP Saturated Switch

MC34063A, MC33063A, NCV33063A

(Top view, copper foil as seen through the board from the component side)

Figure 14. Printed Circuit Board and Component Layout
(Circuits of Figures 8, 10, 12)

INDUCTOR DATA

Converter	Inductance $(\mu \mathrm{H})$	Turns/Wire
Step-Up	170	38 Turns of \#22 AWG
Step-Down	220	48 Turns of \#22 AWG
Voltage-Inverting	88	28 Turns of \#22 AWG

All inductors are wound on Magnetics Inc. 55117 toroidal core.

Calculation	Step-Up	Step-Down	Voltage-Inverting
$\mathrm{t}_{\text {on }} / \mathrm{toff}$	$\frac{V_{\text {out }}+V_{F}-V_{\text {in(min })}}{V_{\text {in }(\text { min })}-V_{\text {sat }}}$	$\frac{v_{\text {out }}+v_{F}}{V_{\text {in(min) }}-V_{\text {sat }}-V_{\text {out }}}$	$\frac{\left\|V_{\text {out }}\right\|+V_{F}}{V_{\text {in }}-V_{\text {sat }}}$
$\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right)$	$\frac{1}{f}$	$\frac{1}{f}$	$\frac{1}{f}$
$\mathrm{t}_{\text {off }}$	$\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}$	$\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}$	$\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}$
$\mathrm{t}_{\text {on }}$	$\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right)-\mathrm{t}_{\text {off }}$	$\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right)-\mathrm{t}_{\text {off }}$	$\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right)-\mathrm{t}_{\text {off }}$
$\mathrm{C}_{\text {T }}$	$4.0 \times 10^{-5} \mathrm{t}_{\text {on }}$	$4.0 \times 10^{-5} \mathrm{t}_{\text {on }}$	$4.0 \times 10^{-5} \mathrm{t}_{\mathrm{on}}$
$\mathrm{I}_{\mathrm{pk} \text { (switch) }}$	$2 \mathrm{l}_{\text {out(max) }}\left(\frac{\mathrm{t}_{\text {on }}}{\mathrm{t}_{\text {off }}}+1\right)$	${ }^{21}$ out(max)	$2 \mathrm{l}_{\text {out(max) }}\left(\frac{\mathrm{t}_{\text {on }}}{\mathrm{t}_{\text {off }}}+1\right)$
R_{sc}	0.3/ $/ \mathrm{pk}$ (switch)	0.3/l lk (switch)	0.3/ $/ \mathrm{pk}$ (switch)
$\mathrm{L}_{(\text {min }}$	$\left(\frac{\left(\mathrm{V}_{\text {in(min) }}-\mathrm{V}_{\text {sat }}\right)}{\mathrm{I}_{\mathrm{pk}(\text { switch })}}\right) \mathrm{t}_{\text {on(max })}$	$\left(\frac{\left(V_{\text {in(min) }}-V_{\text {sat }}-V_{\text {out }}\right)}{I_{\text {pk(switch }}}\right) \mathrm{t}_{\text {on(max }}$	$\left(\frac{\left(\mathrm{V}_{\text {in(min) }}-\mathrm{V}_{\text {sat }}\right)}{\mathrm{I}_{\mathrm{pk}(\text { switch })}}\right) \mathrm{t}_{\text {on(max })}$
Co_{0}	$9 \frac{\mathrm{I}_{\text {out }{ }^{t_{\mathrm{on}}}}^{\mathrm{V}_{\text {ripple(pp) }}}}{\text {. }}$	$\frac{\mathrm{I}_{\mathrm{pk}(\text { switch })}\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right)}{8 \mathrm{~V}_{\text {ripple }(\mathrm{pp})}}$	$9 \frac{\mathrm{I}_{\text {out }}{ }^{\text {ton }}}{} \mathrm{V}_{\text {ripple(pp) }}$

$V_{\text {sat }}=$ Saturation voltage of the output switch.
$V_{F}=$ Forward voltage drop of the output rectifier.
The following power supply characteristics must be chosen:
$\mathrm{V}_{\text {in }}$ - Nominal input voltage.
$\mathrm{V}_{\text {out }}$ - Desired output voltage, $\left|\mathrm{V}_{\text {out }}\right|=1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$
Iout - Desired output current.
$f_{\text {min }}$ - Minimum desired output switching frequency at the selected values of $V_{\text {in }}$ and I_{0}.
$V_{\text {ripple }}(p p)$ - Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.
NOTE: For further information refer to Application Note AN920A/D and AN954/D.

Figure 15. Design Formula Table

MC34063A, MC33063A, NCV33063A

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC33063AD	SOIC-8	98 Units / Rail
MC33063ADG	SOIC-8 (Pb-Free)	98 Units / Rail
MC33063ADR2	SOIC-8	2500 Units / Tape \& Reel
MC33063ADR2G	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
MC33063AP1	PDIP-8	50 Units / Rail
MC33063AP1G	$\begin{gathered} \hline \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
MC33063AVD	SOIC-8	98 Units / Rail
MC33063AVDG	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC33063AVDR2	SOIC-8	
MC33063AVDR2G	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	
NCV33063AVDR2*	SOIC-8	2500 Units / Tape \& Reel
NCV33063AVDR2G*	$\begin{aligned} & \text { SOIC-8 } \\ & \text { (Pb-Free) } \end{aligned}$	
MC33063AVP	PDIP-8	50 Units / Rail
MC33063AVPG	$\begin{gathered} \hline \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
MC34063AD	SOIC-8	98 Units / Rail
MC34063ADG	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC34063ADR2	SOIC-8	2500 Units / Tape \& Reel
MC34063ADR2G	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
MC34063AP1	PDIP-8	50 Units / Rail
MC34063AP1G	$\begin{gathered} \hline \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
${ }^{*}$ NCV33063A: $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

MC34063A, MC33063A, NCV33063A

PACKAGE DIMENSIONS

SOIC-8 NB
D SUFFIX
CASE 751-07
ISSUE AG

NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE

DIMENSION A AND B
MOLD PROTRUSION.
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION $0.15(0.006)$
MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DA PROTRUSION. ALLOWABLE DAMBAR IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.2	BSC	0.05	BSC
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	$0{ }^{\circ}$	$8{ }^{\circ}$	0°	$8{ }^{\circ}$
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC34063A, MC33063A, NCV33063A

PACKAGE DIMENSIONS

PDIP-8
P, P1 SUFFIX
CASE 626-05
ISSUE L

NOTES:

1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS)
3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLI	TERS		
DIM	MIN	MAX	MIN	MAX
A	9.40	10.16	0.370	0.400
B	6.10	6.60	0.240	0.260
C	3.94	4.45	0.155	0.175
D	0.38	0.51	0.015	0.020
F	1.02	1.78	0.040	0.070
G	2.54 BSC		0.100 BSC	
H	0.76	1.27	0.030	0.050
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300 BSC	
M	---	10°	---	10°
N	0.76	1.01	0.030	0.040

SENSEFET is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

